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IDENTIFIABILITY OF MIXTURES OF EXPONENTIAL FAMILIES
by

0. Barndorff-Nielsen

Let o ) = (F(° [t) : T € T) be a family of n-dimensional dis-
tribution functions (d.f.s.) depending on a m-dimensional parameter <
vhich ranges over a Borel set T in Rm, the m-dimensional Buclidian
space. We assume that for each fixed x = (xl, ooy xn) ¢ R® the
function F(x[*) is Borel measurable. Let F( &) denote the set of
all probability measures (p.m.s.) on the Borel field Gn of R
(B® of E®) and let JT denote the set of those 7 ¢ for which

7(T) = 1. The family 3’0 determines a mapping ¥ : J‘I‘ -+ by the
relation

(1) ¥(y) = '{‘F(' I7) dr(r)

We speak of the d.f. ¥(y) as a mixture of 70 (w.r.t. 7). The mapping
¥ 1is said to be identifiable if it is one to one. In certain connections
(e.g. statistical estimation of 7) it is important to knov whether ¥

is identifiable. Various conditions for identifiability and nonidenti-
fiability are known, see Teicher {4] and the references therein. Here

ve want to prove that, under mild restrictions, mixtures of exponential
families ’0 are identifiable. 3'0 is exponential (or of the Darmois-
Koopman tn;e) if for some o-finite measure .
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-rJ hJ(x)
(2) awﬂﬂ-au)uneE‘ du(x)

for x ¢ R, 1 = (rl, YIRTRRD Tm) € T, where a(t) >0, b(x) >0

and a, b, hJ, J=1l, ... , m are all measurable.

Let 7y, 7, € 41, and let

) [}
: av(7.) 7y By(x)
14

(3) £,(x) = —g==— = b(x) .{'a(r) e ay (1), v=1,

s TR SRR

n

Furthermore, let & = (x : fl(x) = fe(x) £ 0), let

n=1{y-= (hl(x)’ oo hm(x)) : xel) and let
() ££y) = [ alx) £ g (), ve1,e.
T

where (t, y) denotes the inner product of (¢ T) and y ¢ . Then
* *

fl(y) = fa(y) if y e n; our aim is to show that under certain further
restrictions this implies 7 =7 Let c(n) denote the convex hull

of 7. We shall distinguish between four cases.

(1) n 1is finite.

PO S U

(i11) n 1is infinite, c(y) is bounded and n does not have an accu-

mulation point in the interior of c(y).

(111) As (11) except that c(n) 1s assumed unbounded.




(iv) n 1is infinite and n has an accumulation point in the interior

of c¢(n).

Case (i). The important example of this case is the binomial distri-
bution. An analysis of the identifiability problem for that distribution

can be found in [4].

Case (ii). From the viewpoint of statistics (ii) is the case of least
interest. We have obtained no general results. The problem is essen-
tially this: (n =m =1). Let 7, and 7, be two p.m.'s on (R, B)
whose Laplace transforms wl(z) and ¢b(z) both exist in a strip

0< Re z <p, p>0. Let [xn] be a sequence of real numbers such
that 0 < X, <p forall n and x, - 0 as n -, Find conditions
under which Ql(xn) = qb(xn) for a1l n implies qﬁ(it) = qb(it) for
all real t (i.e., identity of the Fourier transforms of 41 and 7o

and hence identity of 71 and 72).

Case (1ii). We shall treat the subcase:

(11i)'. 17 contains the set I+ of all lattice points in R® with

nonnegative components, i.e., I+ = {k = (kl’ oo km) : kj is a non-
negative integer, j =1, ... , m).
We have, since 0= (0, ... , 0) ¢ I
* *
(5) £.(0) = [ a(x) dr (1) = [ a(x) ar (1) = £,(0),
1 T 1 T 2 2



Let us denote the common (positive) value in (5) by c¢ and let us

* * -1
introduce the p.m.'s 7, v =1, 2, by dyv(r) =¢ " a(r) dyv(r). Thus

(6) £)(k) = / Tk g7 (q) - ! TRyl s fhk) ke .

Let w be the transformation : v —» A = w(tr) where A

T T M
=(el, vee , €™ let A=w(T) and K, =Y, N sV

()\l, cee s N)
1, 2. We

obtain from {(6)

We can draw the following conclusion.

Proposition 1. Suppose that assumption (iii)' is satisfied and suppose
that T and n, are uniquely determined by their moments (7). Then
™ o= A, and consequently 7L = 7o

In order to derive a sufficient condition for 71 = 72 which

is more useful than that of Proposition 1 we state the following lemma.

Lemma 1. Let n be an arbitrary p.m. on (Rm, Gm) with n(Rﬂn) =1

where R+ is the set of nonnegative reals and with all moments

k k
(8) o = [N A o), Kel




finite. If there exists a positive number p such that the series

9) - L ; M oo i e Kol +oc K|

is convergent then = 1is the unique p.m. with these moments.
The lemms and its proof are straightforward generalizations

of a result in the book of Cramer [2; 176].

Let us apply the lemma to (7). We find (dropping the sub-

script v)
k. + '+ +k
3 ° -
0 < )
—k“kl kKT k|
ks
m (N, p)
B o .
A g1 J
m ® (7\:l p)
=f Il <£[—:l £l )dﬂ
A J=1 -
i
=%fa(.)e°ze ar(<)
T
. Ty I
S%-Sup a(r) P27 . ) '
TeT - i
Therefore 1
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Proposition 2. Suppose that assumption (1i1)' is satisfied and suppose

that

T

r.~>:‘.e'j

(10) sup a(r) e < e

Tel
for some p> 0. Then 7y = 72.
As an application, let us consider the instance where n = m,

h,{(x) = x, (j-th coordinate of x; J =1, 2, ... , m) and vhere the
J

J

measure u in (2) is concentrated on I+; then without loss of gener-
+

ality we can and will assume u to be counting measure on I . Hence

the family 5{0 is given by

[x]
f} a(r) blk) el ™K if x>0
k=0

(11) F(x|t) =

0 otherwise

in an obvious notation. Assumption (iii)' becomes: b(k) > OVk ¢ I

and we have

Corollary 1. 1If the family ¥, given by (1) sattsfies b(k) > OVk e Tt
and '

(12) sup a(z) e Le
1T€T

< ™

for some p> 0 then ¥ 1s identifiable.

Specializing still further we obtain (Feller [3])
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Corollary 2. The mapping ¥ determined by the Poisson family

Zfb = (F('|7) : == < 1 < =}, where
F(x|t) = De ;‘—, x>0, A=e"

is identifiabie,

Case givz. We shall prove'that 71 = 72 provided

(iv)'. There exists an accumulation point y(o) = (y(o) e y(o))
of 7 in the interior of c¢(n) with the following property. If two

arbitrary complex power series

oV (o) (o) (0))’m
Jl 32 vjm (zl ) ( 2 ) (zm - ym ) ’
v = l, 2
coincide for all z = (zl, ver s zm) € n NV for some néighborhood v

of y(o), then they have identical coefficients.
We note that assumption (iv)' is equal to (iv) if m =1. A
sufficient condition for (iv)' is that n be dense in some open subset

of Rm.

Proposition 3. Suppose that assumption (iv)' is satisfied. Then 7175




Proof. Without loss of generality we can and will assume that the
origin 0 1is in n and that there is a neighborhood
K ={y: |yJ|<p,,j=l, ... ,m) of O for which Kcc(n) and K

contains y(o). Then
(13) £1(0) = [ a(x) @)(x) = [ al0) @ry(x) = £5(0) -

Let us denote the common value in (13) by c¢ and let us define the
*
p.m.s. 7, v=12 by dyt(r) = % a(r) dyv(r). Furthermore, let

¢$, v =1, 2 denote the Laplace transform of 7v
*
9,(z) = [ () & (x)
T

vhere z = (zl, cee zm), 2y = uJ + ivJ (=1, ... , m). ¢, exists
for all z € XK' = [qu = (ul, ey um) € K}. In fact, for any such
z, |exp((t, 2z))]| < exp((r, u)) and & moments reflection shows that

there exists & y e¢ n with (1, u) < (1, y); thus

. .
[ 1892 6% () < 2 [ ate) ) g () <=

T v =cn v

More is true: ?, is an analytic function of 2z = (zl, cer zm) in
the domain K'. To prove this it suffices to show that qx is analytic
in each of the variables Zy> J=1, ... ,m (see [1l]). Hence let

us consider




9. (z + he,) - ¢ (z) g
) (2 eg W\ 2 ) Je(r,z) e -1 d)’t(r)

vhere z =u + iv ¢ K', e.j denotes the j-th unit vector in R® and
h 1is an arbitrary conplex number. Let 8 > 0 be so small that

2 + heJ € k' for all h such that |h| < 8. Using the (well known)

inequality

h ]
IeTJ - 1 elTJI
| m | < for |h| <%

8

we find that the integrand in (14) is dominated by

%<e(r,u+5e3)+e(r,u-5ed)>

and since the integral of this quantity is finite we may pass to the

limit h —» 0 under the integration sign in (1l4) to obtain

(z + he,) -
o(z + eﬂ) o(z) _’1/‘ . e(r,z) d7:(1') as b0 .

We have thus shown that (pv is analytic in K'. Consequently q:v can
(o) (o)

be expanded in a power series around 2z =Yy

(v)

(0)y%2 ...
atjl 32 ) 2 ) (

J J
s (z -y (g, -y 2 - yO)™®

o, (z) ==

-




the expansion being valid in some neighborhood V of y(o). We have
(pl(z) = (pz(z) Vze 1 and hetice, by assumption (iv)' and uniqueness
of analytic continuation, q>l(z) = me(z) v z € K'. In perticular

<pl(z) = q>2(z) for all purely imaginary z = iv = (ivl, oo ivm), i.e.,
*

* * *
the characteristic functions of 7L and 12 coincide, hence 7L =7

or, equivalently, 7= 7y - q.e.d.

By the remark preceding Proposition 3, we obtain

Corollary 3. Suppose that in the representation (2): (a) u is
n-dimensional Lebesgue measure, (b) the functions hJ, J=1, ... , m
are all continuous, (c) the set {y :y = (hl(x), cee hm(x)),

b(x) > 0, x ¢ R°) contains a (nonempty) open set. Then ¥ 1is
identifiable.

Specializing still further we get

Corollary 4. Suppose that ?)fo is the Gaussian family

do = {F(.lT)lT = (Tl) 72)} o < Tl<”, 0< 72<w])

@(xy, ooy X7y, ) 2" 3 - 2
(15) ™ = (211 g ) exp (— -3 (x‘-g) >
20 £=1
n 2
) 12- = . g 21 ehl(x)rl-*ha(x) s
T\ 2n xp 2
2
-2 -2
where 1 1s n-dimensional Lebesgue measure, T = §a", T, =0,
hl(x) =z X, and h2(x) = - % z xi. If n>1, then ¥y 1is identifiable

(Teicher has shown, see [5], that ¥ is not identifiable if n = 1l).
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